
The SO(6, 2) model of SU(3) and its generalisation to SU(n)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3463

(http://iopscience.iop.org/0305-4470/19/17/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 3463-3469. Printed in Great Britain 

The S0(6,2) model of SU(3) and its generalisation to SU(rt) 

J Deenen and C Ques.net 
Physique Thtorique et Mathtmatique C P  229, UniversitC Libre de Bruxelles, Bd du 
Triomphe, B-1050 Brussels, Belgium 

Received 8 January 1986 

Abstract. The complementarity relation between the U(p, q )  and U(n)  Lie groups enables 
us to reformulate the S0(6,2)  model of SU(3) in terms of a U ( 1 , l )  group and to outline 
its generalisation to a family of n - 2  models of SU(n) ,  for n 2 3, respectively associated 
w i t h U ( n - 2 , l j , U ( n - 1 , 2 )  , . . . ,  a n d U ( l , n - 2 ) g r o u p s .  

1. Introduction 

Following Bernitein et al (1975), a model of a compact Lie group G is defined as a 
realisation of a representation of G which consists of a direct sum of irreducible 
representations (irreps), containing exactly one representative from every equivalence 
class of irreps of G. For SU(2), several models are known (Schwinger 1965, Biedenharn 
and Louck 1981, Bracken and MacGibbon 1984, Bracken 1984, Van der Jeugt 1985), 
out of which Schwinger’s UW, model (1965) looks the most attractive, thanks to the 
use of boson calculus computational advantages, even if it is not semisimple. 

Recently a remarkable model of SU(3) has been discovered independently by 
Biedenharn and Flath (1984) and Bracken and MacGibbon (1984). The model space, 
which is a subspace 93 of the six-boson Fock space s6, carries an irrep of an S0(6,2)  
group. Biedenharn and Flath have emphasised that this model provides the framework 
for a global algebraic formulation of the SU(3) tensor operator structure, thereby 
leading to a complete resolution of the multiplicity problem for such operators. On 
the other hand, Bracken and MacGibbon have stressed that the whole representation 
space can be generated by applying some modified boson creation operators to a 
vacuum state, in much the same way as the basis vectors are constructed in the 
Schwinger UW, model of SU(2). 

The purpose of the present paper consists in simplifying the Bracken and MacGib- 
bon analysis for SU(3) and outlining its generalisation to SU( n ) ,  while using the results 
recently obtained by one of us (Quesne 1986) about the complementarity relation 
between the U(p, q )  and U(n)  Lie groups (Kashiwara and Vergne 1978). 

In § 2, a family of n - 2 models of SU( n) is defined. In § 3, bases of the correspond- 
ing model spaces are constructed. In § 4, the model of SU(3) so obtained is shown 
to coincide with the S0(6,2)  model. Finally, 0 5 contains the conclusion. 

t M a k e  de recherches FNRS. 
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2. Models of SU(n) 

Let vi, and = (vI5)', where i = 1, .  . . , n - 1 and s = 1, .  . . , n, denote ( n  - l ) n  pairs of 
boson creation and annihilation operators. When acting on the boson vacuum state 
IO), the operators v15 generate an ( n  - 1)n-boson Fock space 2F(fl-l)fl. Under the real 
symplectic group Sp[2( n - l)n,  RI, whose generators are realised by the operators 
(Moshinsky and Quesne 1971) 

' : 5 , ] 1  = vZSv]I 'l5,], = 6U'6]! ~ L S , ] t  =t(771s61r + 6]fvIs) (2.1) 

9P^(n-l)n decomposes into the direct sum of two subspaces, made of all the boson states 
with an even or odd boson number respectively. Either subspace carries a positive 
discrete series irrep of Sp[2( n - l ) n ,  RI-or more exactly of the double covering group 
Mp[2(n - l ) n ]  of Sp[2(n - l)n,  RI-characterised by its lowest weight ((1/2)(n-1)n) or 
((1/2)(n-1)f13/2). 

Let us consider the following group chain (Quesne 1986): 

Sp[2(n - l )n ,  RI = U(pn, qn) = U(P, 4 )  x U(n) (2.2) 

p + q = n - 1 .  (2.3) 

where p and q are any two positive integers subject to the condition 

The U(pn, 9n) basis operators P,, ,,,, where i, j =  1, .  . . , n - 1 and s, r = 1, .  . . , n are 
defined by 

plS,]f  = 'ZS,], if i, j = 1, . . . , p 

= [ E . , .  11 I5  if i, j = p + 1, . . . , n - 1 

= 't Is,l1 i f i = l ,  . . . ,  p a n d j = p + l ,  . . . ,  n-1  

= D , s , j l  i f i = p + l ,  . . . ,  n - l a n d j = l ,  . . . ,  p 

and the U( p ,  q )  and U(n)  ones are obtained from them by contraction over the index 
s or i as follows: 

pi. = E  p. Is915 . i, j = 1, . . , , n - 1 
S 

P5, = 1 E ~ P ~ ~ , ~ ~  s, t = 1, . . . , n 
I 

where 

El = $1 

= -1 

if i = 1, . . ., p 

if i = p + l , .  . . , n-1. 

The U(p, q )  basis operators can also be written as 

p, = if i, j = 1, . . . , p 

(2.7) 

= E], 

= DI 

= D, 

if i, j = p + 1, . . . , n - 1 

if i = 1 , .  . . , p  a n d j  = p +  1 , .  . . , n - 1 

if i = p +  1, .  . . , n - 1 and j = 1 , .  . . , p 

(2.8) 

where D&, D, and E ,  denote the contractions over s of the operators (2.1). 
The U(pn, qn) irreps [p] contained in either irrep of Sp[2(n - l )n ,  RI  (Kashiwara 

and Vergne 1978, King and Wybourne 1985, Quesne 1986) are positive discrete series 
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irreps characterised by a single integer p E 2, related to the eigenvalue p + ( p  - q)n/2 
of the U(  pn, qn) first-order Casimir operator 

is 

The branching rules are given by 

p=-c€ 
p even 

and 

(2.9) 

(2.10) 
p = - X  
p odd 

The U( p ,  q )  and U( n )  groups are complementary (Moshinsky and Quesne 1970) 
within any irrep [ p ]  of U( pn, qn), meaning that the U( p ,  q )  x U(n) irreps contained 
in [ p ]  are multiplicity free and that there is a one-to-one correspondence between the 
labels of the associated U(p, q )  and U(n)  irreps (Kashiwara and Vergne 1978, King 
and Wybourne 1985, Quesne 1986). The branching rule is 

( P I  

[ k l [ k ' l  
[ p ]  4 C 0 [ k ,  , . . k, ; k . . . k 51 x [ k ,  . . . kpO - kk . . . - k i ]  (2.11) 

where the summation runs over all the partitions [ k ]  = [ k ,  . . . k,] and [ k ' l =  [kl . . . kbl 
into p or q non-negative integers, subject to the condition 

k,  - C k &  = p. 
a P 

(2.12) 

Here the indices a and p run from 1 to p and 1 to q, respectively. In equation (2.11), 
the U(p, q )  irreps are positive discrete series ones, specified by their lowest weight 
{ k ,  + n /2 , ,  . , , k ,  + n/2; kb + 1112,. , . , kj  + n/2}, that we denote in short by 
[ k ,  . . , k , ;  k {  . . . k b ] .  On the other hand, the U(n )  irreps are finite-dimensional ones, 
characterised by their highest weight { k ,  + ( p  - q ) / 2 ,  , . . , k, + ( p  - q)/2,  ( p  - q)/2,  
- kb + ( p  - q)/2, . . . , - k :  + ( p  - q)/2}, that we denote in short by 
[ k ,  . . . k,O- kb . . . -kj]; they are of mixed type, i.e. with negative as well as non- 
negative labels (Flores 1967, King 1970, 1975). 

From the above results, it is clear that the operators Pij and Ps, generate in 9(fl-l)fl 
the U( p ,  q )  x U( n )  representation 

@ [ k ,  . . .  k , ;  kj  . . .  k b ] x [ k ,  . . .  kpO-kb . . .  - k : ]  
I k I[&'] 

(2.13) 

where the summation is now an unrestricted one over all the partitions [ k ]  and [ k ' ]  
into p or q non-negative integers. Let us now consider the subspace 93p,q of U(p, q )  
lowest weight states, i.e. the set of vectors I$) of 3((n-l)n satisfying the conditions 

EiJI*) = 0 if 1 < j < i < p o o r p + l  s j < i <  n - 1  (2.14) 

and 

Dijl*) = 0 if i =  1 , .  . . , p  and j = p + l , .  . . , n - 1. (2.15) 
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From equation (2.13), it is obvious that the operators PSI generate in 93p,q the U(n)  
representation 

O [ k , .  , . k p O - k b .  . .  - & I .  
[ k l [ k ' l  

(2.16) 

Any U(n)  irrep [ k ,  , . . kpO- kb . . . - k i ]  remains irreducible when restricted to 
SU( n )  and corresponds to the ( n  - 1)-row Young diagram 

[ k ,  + k ; ,  . . . , k, + k ; ,  k i ,  k ;  - k b ,  . . . , k ;  - k i ]  E [ I ,  1 2 .  . . l f l - l ] .  (2.17) 

From equation (2.16), it follows that the subrepresentation of SU(n) ,  generated in Bp,q 
by the operators 

(2.18) 

has the form 

=C O[l,I,. . * 1,-,]. (2.19) 

On the right-hand side of equation (2.19), the summation runs over all the partitions 
into n - 1 non-negative integers. Hence it contains exactly one representative from 
every equivalence class of irreps of SU(n).  The n - 2  subspaces 93p,q of P~(n-l)n, for 
which p and 4 satisfy equation (2.3), therefore define a family of n - 2 models of SU( n) .  

[I1 

3. Basis states 

To find a basis of 9$,, let us solve equations (2.14) and (2.15). Any solution of 
equation (2.14) is a linear combination of lowest weight states of irreps of the U(p, 4)  
maximal compact subgroup U ( p )  x U(4). Such lowest weight states can be written as 
(Moshinsky 1962) 

( R  ir ( 7 7 p - o + 1  ... p , ,  ... 0 - 1 9  1 n - j  
a = l  s = a  

where q,, [,\, s, denotes the determinant of order r obtained from rows i,, . . . , i, and 
columns s,, . . . , s, of the matrix ~ ~ ~ , s ~ ~  and the exponents nos and nbf  may take any 
non-negative integer values. 

Any solution of equation (2.14) can be transformed into a simultaneous solution 
of equations (2.14) and (2.15) by replacing the standard boson creation operators v,, 
by modified ones aL, satisfying the traceless conditions (Quesne 1986) 

i =  1 , .  . . , p  j = p + l , .  . .  , n - 1 .  (3.2) 
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These traceless boson creation operators and the associated annihilation operators ais 
are the generalisation to U(n) of the O ( n )  and USp(n) corresponding operators 
introduced by Lohe and Hurst (1971) and they are defined by 

if i = 1,  . . . , p 

if i = p + 1, . . . , n 
(3.3) 

and 

a. IS  = 5. IS .  (3.4) 

(3.5) 

Here A is a p q  x p q  operator matrix, whose elements are given by 

A i j , k l  = S i k E I J  S f j E k i  i, k = 1, . . . , p j ,  I = p + 1 ,  . . . , n - 1 

and A-' is its inverse. The operators a:s and ais are Hermitian conjugates of one 
another in 93p,q and have the property of transforming any state satisfying equation 
(2.15) into another state still fulfilling the same equation. 

We conclude that a basis of 93p,q is provided by the set of states 

l{nus}, {nbtl) 

(3.6) 
where a: ,... i , , s  ,... *, denotes the determinant of order r obtained from rows i l ,  . . . , i, and 
columns sl,. . . , s, of the matrix l/a:Sll and nus, nbI run over all non-negative integers. 

4. Application to SU(3) 

For SU(3), we obtain a single model space 24 = W,.,, which is the subspace of ,F6 
consisting of all U ( l ,  1 )  lowest weight states. In this case, equation (2.14) disappears, 
and equation (2.15) gives rise to a single condition, namely 

D121JI) = 0. (4.1) 
The traceless boson operators (3.3) and (3.4) are now 

a:, = vlS  - (T vlIv21)(Ell  + E22)-152s 

a2s = 772s - ( v 1 r v * r ) ( E l l + ~ 2 2 ) - 1 5 1 s  

( 7 1 t v 2 1 ) ( ~ 1 1 +  ~ 2 2 ) - 1 =  ( ~ l l +  ~22-2) -1  c Tlrv2r ) 

a,, = 5 1 s  

a2s = 52s. 

(4.2) 
t 

Since 

(4.3) 

we can eliminate the denominators in equation (4.2) and define renormalised traceless 
boson operators as follows: 

(4.4) A .  = a .  A;, = ( El + E22 - IS  IS. 
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These new operators are not Hermitian conjugates of one another any more, but they 
are simple cubic polynomials in vis and 6,. In terms of them, the basis vectors (3.6) 
of 93 may be written as 

apart from some irrelevant numerical factor. 
It is now obvious that such a model of SU(3) coincides with that of Bracken and 

MacGibbon (1984) if we identify our operators vis, &,, v2,, &,, A;,, AI, ,  AiS, A2, 
and P,, with their operators E‘, a,, ps, p’, A”, A,, Rs, Bs  and As respectively, and if 
we set P = Z s ~ l s & s  and Q=Zsv2st2s ,  so that E , , + E 2 , - 2 = P + Q + l .  As shown by 
Bracken and MacGibbon, the renormalised traceless boson operators A;, and Ai, 
generate under commutation a representation of the Lie algebra s0(6,2) and, moreover, 
93 carries an irrep of the corresponding Lie group S0(6,2) .  As was stressed by 
Biedenharn and Flath (1984), the renormalisation plays an essential role in obtaining 
such results. From the commutation relations of the unrenormalised operators a!, and 
a, (Quesne 1986), it is indeed clear that the latter do not generate a closed algebra 
under commutation. 

5. Conclusion 

In the present paper, we have obtained a family of n - 2  models of SU(n) for n k 3, 
starting with the S0(6 ,2)  model of SU(3). For n > 3 ,  such models will be useful if 
they carry an irrep of some group. Whether this is the case is still an open question, 
significantly more complex to answer than the corresponding one for n = 3. One reason 
for such complexities lies in the renormalisation of the a:, operators, now containing 
the operator matrix A-’ instead of a function of a number operator as in the n = 3 
case. A further reason is that an attractive feature of the S0(6 ,2)  model of SU(3) is 
lost: the models for SU( n) ,  n > 3, do not admit every vector that can be obtained from 
the vacuum state by application of the traceless boson creation operators; consequently 
the counterpart of s0(6,2) for n > 3, if it does exist, will not be simply generated by 
commuting the renormalised traceless boson operators. 

As a final comment, we would like to stress that the SU(2, l )  model of SU(2) 
(Bracken and MacGibbon 1984, Bracken 1984, Van der Jeugt 1985) does not belong 
to the family of models considered in the present paper. Hence Bracken’s suggestion 
(1984) of considering the construction of a model for SU(4) as equivalent to finding 
the next Lie algebra in the sequence su(2, l ) ,  s0(6,2),  . . . may be meaningless. The 
present paper shows that any sequence, if it exists, should most probably start with 
s0(6,2). 
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